Blackcurrant Breeding and Research at The James Hutton Institute

Rex Brennan
Fruit Breeding Group
Plan

• Breeding programmes and cultivar releases to date
 ➢ Processing and fresh market

• New techniques for selecting the plants we need
 ➢ Marker–assisted breeding strategies

• Emerging challenges
 ➢ Environmental effects eg. reducing levels of winter chilling

Can we improve on the cultivars we already have?
Blackcurrant Cultivars

- Ben Avon
- Big Ben
- Ben Dorain
- Ben Gairn*
- Ben Vane
- Ben Finlay*
- Ben Klibreck
- Ben Maia
- Ben Starav
- Ben Como*
- Ben Chaska+
- Ben Hope

* First commercial UK cv. with resistance to BRV
* First commercial UK processing cv. with resistance to gall mite
+ First UK cvs released in USA
Breeding Objectives

Fruit quality

- High Brix/acid ratio
- Low total acidity
- Anthocyanins
 - Delphinidins preferentially selected
- Vitamin C (AsA)
 - > 140 mg/100 ml
- Sensory traits
- Berry size
 - 1g minimum

Agronomic

- Environmental resilience
 - Winter chill levels
 - < 2000 h/7.2°C
- Pest resistance for low-input growing
- Acceptable crop yield
 - > 6 t/ha
 - Juice yield also quantified
Fresh Market Blackcurrants

- Increasing interest
 - Predominantly related to health benefits

- Different requirements and breeding objectives
 - Often different cultural practices
 - Hand harvesting
 - Grown on wires in some areas
 - Large berries preferred
 - 2g +
 - Green strigs preferred
 - Aiming for berries suitable for eating fresh
 - Higher Brix/acid ratios

Big Ben
Recent releases

Ben Starav (Ben Alder x ([E29/1 x (93/20 x S100/7)] x [ND21/12 x 155/9]))

- Consistently high yields (mean **10.07 t/ha** in trials), medium berries, low-medium chilling reqt., high Brix and juice yield, very high anthocyanin content

Ben Klibreck (Ben More x C2/13/15) x (Ben More x Ri-74020-16)

- High yields (mean **10.2 t/ha** in trials), medium berry size, good growth habit, moderate/high chilling reqt., high vitamin C and anthocyanin content
New release – Ben Finlay

- Gall mite-resistant
- Parentage: [(SCRI P10/9/13 x Ben Alder) x EM B1834-67]
- High yields, suitable for low-input growing
- Vigorous growth habit
- Early-midseason, medium sized berries
- Excellent flavour
- High Vitamin C
- Medium-low chilling requirement
Trial seedlings from JHI breeding programme

JHI 9253-1
- Complex cross involving elite lines from Scotland, Sweden and England
- Late mid season cv.
- Tall vigorous growth
- Good yields at Ben Hope/Alder levels
- High AsA, v. good anthocyanins

JHI 92127-1
- Complex cross incl. Ben Lomond, Ben Rua etc.
- Early mid season
- Yields good in trials in 2009 & 2010
- Very stocky upright growth, with dense foliage
- High anthocyanins, medium AsA
- Good ‘hangability’ (only 10% drop after 14 days)
Breeding techniques

- Expensive to run breeding programmes:
 - Lengthy timescales
 - Some traits take a long time to screen for, others are impossible to screen on a high-throughput basis
 - Field/glasshouse costs

- Timescales need to be reduced and efficiency needs to be increased
 - Time to cv. currently 12-15 years

- More extensive phenotyping in field, glasshouse and CE rooms

- Establish link between genotype and phenotype
Molecular Breeding

- Rapid identification of genetically superior individuals in breeding populations

- Can be utilised in situations where:
 - Assessment in field takes a long time
 - Pest resistance (some)
 - Assessment can only be done on mature plants over time
 - Fruit quality

- Basic research costs relatively high, deployment costs low

- No environmental effects

- Must be associated with detailed evaluations of performance in field

- Marker-assisted selection possible by linking of genotype with phenotype

- Simple traits so far, more complex traits in development
Gall mite marker

- Gall mite still a v. serious problem
 - Pesticide withdrawals, plantation lifespan, etc.

- Resistance available from Ce gene from gooseberry (cf. EMR)
 - Material at JHI now at BC3+

- Field infestation plot for screening new lines from breeding programme
 - 4 years

- Resistance mapped on genetic linkage map, associated marker identified
 - Accuracy > 95% across mapping population, cvs., trial lines etc.

- Converted to PCR-type (high throughput)
 - Can test 2-3k seedlings p.a.

- Marker now routinely deployed in JHI breeding programmes as a selection tool
 - Field infestation plot removed
 - Separate plots of exclusively resistant material initiated
 - Material tested for other programmes, eg. ISK, Poland
Mite-resistant lines in commercial trials

New cv. release: Ben Finlay

JHI 9968R-1
91130-1 x JHI S36/1/100

JHI 92015-13
(JHI C7/4/24 x Ben Gairn) x EMR B1834-19

JHI 9154-4
Ben Dorain x EMR B1834-120
Trait associations – fruit quality traits I

- Measurements across reference mapping population (ca. 300 plants) for 4 years at JHI
- Individual traits placed on genetic linkage map
 - Fruit size
 - Anthocyanins
- Associated molecular markers identified
 - Validation in progress for markers linked to berry size and total anthocyanins
Trait associations – fruit quality traits II

- Use of gene expression data from ripening fruit linked to metabolomic analyses
- Fruit quality analysed at various stages
- Gene expression monitored across stages using Agilent microarrays
- Key genes mapped, markers identified for the various quality and nutritional traits
- Environmental influences on gene expression
Reduction of seedling numbers using marker-assisted breeding

Marker for gall mite resistance Est. 2012

Markers for berry size Est. 2013

Markers for anthocyanins, sugars, vitamin C Est. 2015

Reduced seedling numbers – but increased relevance to industry needs

Faster field selections and cv. releases
New challenges (& opportunities)

- Disease problems eg. *Phomopsis*
- Environmental effects on blackcurrants
 - Winter chilling reductions
 - Increased frost risk
 - Water use efficiency
 - Effects on fruit quality
Genetic resources relating to winter chill

- Use of low-chill germplasm (ex. NZ) for environmental resilience
- Phenotyping of germplasm (selection for low chill)
- Mapping population grown in NZ and Scotland (from 2012)

Population of ‘Ben Dorain’ (high chill’ ex. Scotland) x ‘Sefton’ (low chill, ex. NZ)
Conclusions

- Can we improve on the cultivars we already have?
- **Definitely yes**

-Targets for the future:
 - Environmental resilience and cropping consistency
 - Cultivars and end-user needs more exactly aligned
 - Increased quality, particularly health-beneficial components
 - Improved resistances for low-input growing

-Tools to help us achieve our aims:
 - Marker-assisted breeding
 - Smart phenotyping linked to the genetics
 - Good collaborations with industry and academic partners
Acknowledgements

James Hutton Institute
Breeding Group
Sandra Gordon, Dorota Jarret
Genomics Group
Joanne Russell, Linzi Jorgensen, Christine Hackett
Biochemistry Group
Rob Hancock, Derek Stewart
Met Data from JHI Automatic System
Mark Young

Overseas Collaborators
NZ Plant and Food
Geoff Langford, Cath Snelling, Alastair Currie

Poland
Stan Pluta
Edward Zurawicz

Other European breeders

UK Collaborators
GSK
Michael Dunsire
Rob Saunders
James Wickham

University of Dundee
Lyn Jones

University of Reading
Nick Battey
Paul Hadley

UK Blackcurrant Growers