New Crop Product Functionality

Derek Stewart

Enhancing Crop Productivity and Utilization – JHI
Chair of Food Chemistry – Heriot Watt University
Drivers for crop product functionality

- Mortality ↓: Morbidity ↑
- Western population is living longer but is sicker.
- CVD, Diabetes, (some) cancers, neuro-degeneration and inflammation associated disorders
Functional products from cereals

- Wheat, Barley, Oats and Rye - Major grains for food and feed in Europe
- Worldwide at least 1500 Mtonnes cereal grain produced annually (inc rice).
- Only Barley and Oats contains β-1,3-1,4-glucan, one of the few plant components with an approved health claim.
- β-glucan has been shown to lower/reduce blood cholesterol. “Blood cholesterol lowering may reduce the risk of (coronary) heart disease. The (EFSA) Panel considers that, in order to bear the claim, foods should provide at least 3 g of oat β-glucan per day”. EFSA 2010.
Functional products from cereals

Functional fat replacer in multiple products - mayonnaise, spreads, dips & dressings, sauces, meat products, baked goods, ready meals,

Problem (?)
• Biosynthesis still to be fully elucidated but being addressed.
• The “product” is a MWt distribution of polysaccharides - 31-3100 x 10^3.
• What is the real target?
• Are there actually several targets?

Functional binding agent - meat products, baked goods, ready meals,

Colonic fermentation
Prebiotics

Low
Medium
High MWt

Binding agent
Cholesterol reduction

New breeding targets
Functional products from cereals

• Worldwide: at least 1500 Mtonnes cereal grain produced annually.
• This also generates 2250 Mtonnes of straw. Bran is also generated.
• Previously low values residues they are now increasingly becoming targets for valorisation: feedstock for fuel, chemicals, ingredients etc.
• These approaches (not fuel) have been reinvigorated with the shift towards sustainable production.
• The biorefinery approach (wet, dry solvent etc) is being explored by several groups globally.
Wheat bran wet fractionation stream

Mark Lawther DTI, DK

Main products
Especially for prebiotic content

Wheat Bran

- **Insoluble Fraction:** 55-60%
- **Soluble fraction (intermediate):** 40-45%

Intermediate

- Xylo-Oligosaccharide: 10-20%
- Soluble Xylans, prebiotics: 10-20%
- Aleurone-rich Protein: 3-4%
- Insoluble Dietary Fibre: 18-25%
- Aleurone Rich Protein, Hydrol.: 3-4%
- Aleurone-rich Oil: 0.5%
- Defatted Aleurone-rich Protein: 3-4%
- DARP, Hydrolyzed: 3-4%
- DGRP, Hydrolyzed: 6-12%
- Germ Oil: 1.5-3%
- Defatted Germ Rich Protein: 6-12%
- GRP Hydrolyzed: 7-15%

Main products

- Especially for prebiotic content

* An intermediate product only.
** Can be sold as is or processed further.
• All % figures relate to the cereal bran.

- **Germ Rich Protein** (7-15%)
- **Xylan rich protein** (7-15%)
- **Glucose Syrup** (15-25%)
- **Germ Oil** (1.5-3%)
- **Defatted Germ Rich Protein** (6-12%)
- **Germ Oil** (1,5-3%)
- **Defatted Germ Rich Protein** (6-12%)
Oat bran wet fractionation stream
Mark Lawther DTI, DK

- **Main products**
 - Especially for prebiotic content

- **Insoluble Fraction:** 30%
 - **6**: Oat Bran
 - **6**: Intermediate "Bran"
 - **6.5**: Insoluble Fraction
 - **6**: Soluble Fraction (intermediate): 40-45%
 - **0.5**: Oat Bran

- **Insoluble Fraction:** 30%
 - **7**: Beta glucan 2:
 - **8**: Beta glucan 3, prebiotics:
 - **9**: Aleurone-rich Protein
 - **9**: Insoluble Dietary Fibre: 12 – 15%

- **Soluble Fraction** (intermediate): 40-45%
 - **0**: Oat Bran
 - **1**: Oat maltodextrins 28-31%
 - **2**: Oat Protein: 13-16%
 - **2**: Beta Glucan 14-18%
 - **3**: OP Hydrolyzed 7-10%

- **Defatted Aleurone-rich Protein**
 - **4**: Oat Oil 4-8%
 - **5**: DOP, hydrolyzed 5-8%
 - **5**: Defatted OP 6-10%

- **Aleurone-rich Oil:** 0.5%
 - **11**: Aleurone-rich Oil
 - **12**: Defatted Aleurone-rich Protein
 - **12**: DARP, Hydrolyzed

- **Beta Glucan**
 - **14**: Beta Glucan 14-18%
 - **2**: Beta Glucan 3, prebiotics:

- **Aleurone-rich Protein**
 - **9.5**: Aleurone Rich Protein, Hydrol.
 - **10**: Insoluble Dietary Fibre: 12 – 15%

- **Defatted OP**
 - **6**: Oat Bran
 - **10**: Defatted OP 6-10%

- **Aleurone-rich Oil**
 - **0.5**: Oat Bran

- **Beta Glucan**
 - **14**: Beta Glucan 14-18%

- **Oat Oil**
 - **4**: Oat Bran

- **Units**
 - *An intermediate product only.
 - **Can be sold as is or processed further.
 - **All % figures relate to the cereal bran.
Minor crop wastes also have major value

Blackcurrant

Juice + Pulp → Anthocyanin rich Feedstock
(Food or Pharma)

Age-related Rat Liver Gene Expression Following Blackcurrant Consumption

Increased cerebral arterial flexibility

Neuroprotection via blackcurrant polyphenol pre-incubation

Sample and blackcurrant incubation (ug/ml)

Control Stressed 7.8 15.6 31.25 62.5 125

ROS production

Increased cerebral arterial flexibility

Control
Black currant extract (0.01 %)

** p<0.0286
* p<0.0354

Flow [mL/min] Tension [g]
Alternative functional potato products

Haulms

Solanesol - antiulcer, anti-hypertension. Intermediate for coenzyme Q10 (CVD, atherosclerosis and cancer.

Spoiled and greening

Calystegines

Chiral pharma feedstocks

Tropane alkaloids - anticholinergics and stimulants
Conclusions

• Crops can be more significantly utilised.

• The decreasing cost of genomes sequencing and advent and utility of high throughput metabolite analysis (metabolomics) should identify many more potential targets.

• The push for sustainability will facilitate the valorisation of lower value crops, waste and spoiled material.

• These alternative functional products will feed into the expanding functional food markets.

• The exploitation of these undervalued resources will need an interdisciplinary approach, in particular the inclusion of socio-economic skill bases.

• Cereal waste exploitation is likely to be an immediate winner particularly in the boom economies e.g. India.